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ON AN OPERATOR THEORY OF LINEAR SYSTEMS WITH PURE AND DISTRIBUTED DELAYS*

E. W. Kamen

School of Electrical Engineering
Georgia Institute of Technology

Atlanta, Georgia

Abstract

A representation theory based on convolution
operations is developed for a large class of
linear systems containing pure and distributed
delays in state and control. In terms of this
framework a necessary and sufficient condition
and a sufficient condition are given for func-
tional (null) controllability. The conditions
involve the generation of modules defined over
a convolution ring of functions.

1. Introduction

In many control problems the systems under
consideration contain pure and distributed time
delays in state and control (examples are given
by MANITIUS [1]). Such systems are usually re-
ferred to as hereditary systems since the rate of
change of the present state depends on past values
of the state and control or input.

In this paper we consider the class of linear
systems given by a first-order functional differen-
tial equation of the form

(o] r
x(t) = I A(9)x(t+9)de + Fox(t) + 7 Fix(t - “1)
-c i=1

1)

~0 S
+ J—d B(8)u(t+ p)de + Gou(t)+i§10iu(t - bt)

where c,d and the ai'bi are positive real numbers,
the Fi (Gi) are nxn (nxm) matrices over the

reals R, A(8) (resp. B(8)) is a nXn (nxm) matrix
of (Lebesgue) measurable and integrable functions
on [-¢,0] ([-d,0]), x(t) ER is the "instantaneous

state,” and u(t) € R" is the input.

Systems of the form (1) have been studied
using mainly functional-analytical methods applied
to a state space setting defined in terms of the
product space R x LP(-h,0;R") where h = max[c,ai].

In particular, numerous results on controllability
and optimal feedback control can be found in the
work of DELFOUR-MITTER [2,3], DELFOUR [4], and
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DELFOUR-McCALLA-MITTER [5] (see also the survey
by MANITIUS [6]).

In contrast to existing methods, our approach
to the study of (1) is based on an algebraic
setting defined in terms of convolution operators.
More precisely, in the next section it is shown
that (1) can be written in the form

X(t) = (F*x)(t) + (G*u)(t) (2)

where * denotes convolution and F and G are
matrices whose elements belong to a convolution
ring of functions and impulses (Dirac distribu-
tions). The convolution representation (2) is a
special case of the time-domain operator framework
developed by KAMEN [7].

In the latter part of the paper the
representation (2) is applied to the problem of
driving initial functions to the zero function in
finite time (functional null controllability).
New algebraic criteria for controllability are
given in terms of modules defined over the convo-
lution rings.

2. Representation by Convolution Operators

Let Lloc denote the space of all real-valued

Lebesgue measurable functions f(t) that are

locally integrable, i.e. I |£(t)|dt < ® for any
K

compact subset K of R. Let Lloc denote the sub-

'+
space of Lloc consisting of all functions with

support bounded on the left. It is easily

verified that Lioc is a ring with pointwise

addition and with convolution defined by

(8 * £)(t) -f g(8)£(t - 0)do .

-®

*This work was supported by the U.S. Army
Research Office, Durham, N.C., under
Grant DA-ARO-D-31-124-73-G171.




hote that if the support of g is contained in
f0,a], a > 0, then

nd
(g* f)(t) = | g(8)f(t-0)de
Y

and by a change of variables, we have

°

®* () = | 2(8)£(t +6)de 3)

a
where g(e) = g(-8).

Letting 5a denote the unit impulse (Dirac

distribution) concentrated at the point [{a}, define

J= {f+§_' b8, LI 4 b ER,
o TR e

q = positive 1nteger} 5 (4)

The addition in the definition of J can be taken
in a formal sense or it can be viewed as addition
in some space of distributions. The set J is an

overring of Lioc
given by

\\* =
(f+Z hidai/ <g’7 °1°di>

with the convolution operation

frg+2 (cif(t - di)+big(t - ai))

+Zp‘b “N) )

Note that 5, is the identity element of the ring J.

Finally, let L:_ denote the space of all real-

valued measurable functions f(t) defined a, e. on
R with support bounded on the left, such that

J ]f(:)}dc < o, The space L1 is a subring of L1

Via the above constructions we can now

characterize (1) in terms of convolution operations.

With u€ (L]')m and x € Jn, the system

equation (1) can be written in the form
x(t) = (F*x)(t) + (G*u)(t) where F (G) is a
nXn (axm) matrix over J_ = {a€ J:supp « is

Theorem 1:

compact and contained in [0,®)}.
Proof: Applying (3) and (5) to (1), we have that

r
. !~

= 2 * ? %*
X KA‘F s Fl’.6 x+(B+ G Gb) u

i=o
where R(t) = A(-t) and B(t) = B(-t).
By definition of A,B and the Fi.’ci’ the coefficient

matrices of x and u are over Jc. ||
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3. Initial Conditions

In this section we show how to "handle"
nonzero initial conditions in solving the operator
equation X = F*x + G*u, This result will be
utilized in the next section to study functional
controllability.

Suppose that we are given
X(t) = (F*x)(t) + (G*u)(t) (6)

with F and G defined over .Ic as in Theorem 1.

Now let a = max {7 € supp F) and

b = max {r € supp G}. Then to solve (6) for

t > 0 we need to specify x(t) on the interval
[-a,0] and u(t) on the interval [-b,0]. We assume
the following initial conditions

n
x(0) = x°€ R

n
x(€) = 8(t), t€[-a,0), “@‘E-a.oﬁ )
m

1
u(t) = u (t), t€(-b,0], U, € (I‘{-b,o'j)

where I..1

fec,d]
Given f € Li, define

= (f€ L}_:supp fsle,d]).

£(t), t€fc,d)
flge,a)® =
0, otherwise
By the results of DELFOUR (4], with initial data
1 ND
(7) and u[(o’-) E(L[o,-) p the convolution
equation (6) has a unique solution x(t) with

*| (o0 (goce))
O ) o,
1 m
E(L[o,a)> with initial

Theorem 2: Given u( TS
’

data (7), the solution of (6) for t > 0 is equal
to the solution for t > 0 of

X(t) = (F*x)(t) + (G*u)(t) + v(r)

with initial data equal to zero, where

- (3
X (F*xo + G*uo)‘(o,w) Je

Proof:
n

xoek . Since x = ¢ + x](o") and u = “'(o,

with X, = 0, we have that

Clearly xoeso sets up the initial value
u)wo

F*¥x + G*u = F*xl(o'ﬂ) + (:*ul(o &
)

+F*A+G¥u
[+

Hence

(F*x+G* u)[(o,.)= F*xl(o’.) +G*u‘(°'.)

+ (Fro+6*u)| o |
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As a consequence of Theorem 2, operational
methods, such as those developed in [7], can be
used to solve operational differential equations
of the form (6) with nonzero initial conditions,
We shall now apply this result to the study of
controllability.

4. Controllability

Let l.cl denote the set of all fEL}_ such that
supp f is compact and contained in [o,®). With the
induced operations Li is a convolution ring con-
tained in the ring Jc'

Definition: The system given by (6) is said to
be (null) controllable if for any initial con-
dition (7), there exists a control u€ (me such

that the solution of (6) is zero for all t > h,
some h > 0.

In terms of the following constructions we derive
a necessary and sufficient condition for control-
lability.
n th
Let p denote the n~ derivative of 60 in the
sense of distributions. The element pn belongs to

.B;’, the convolution ring of Schwartz distributions

on R with support bounded on the left (see [7]).
Given fGL_‘l.oc, the derivative of f in the sense

of distributions is equal to p* f (with the con-
volution p* f carried out in.q_'). Therefore (6)

can be expressed completely in terms of convolu=-
tion operations:

(pl - F)*x = G*u (8)
where I is the nxn identity matrix.

Now let Jc[p] denote the set of all finite
sums Zai'"pi where o, GJC. With the standard
operations, J [p] is a convolution ring of dis-
tributions (contained in 45;). The rings Jc and
L}: (cJ_) are subrings of Jc[p'_].

Letting Jc[p]n denote the space of n-element
column vectors over Jc[p], we have that Jc[p]n is
a free finite module over Jc[p] with componentwise
addition and with multiplication defined by

TELs Bys wees BYTNT (MR A MGy, uumup )T
where T, 91€Jc[p], and TR denotes the transpose.

Since L: is a subring of Jc[p], by restricting
the multiplication operation to LC we have that
1
chp]n te alsy a (nonfinite: i _-mudule. Given

n ’
Vi yaw ety ch.JctP] , let \‘,’]- Nyres vy Vq>'_3

denote the Lé-submodule of Jc[p]“ generated over

1
Lo BY ¥p» Yp» +05 Yoo That ts, ¥y, ooy vq)L:

1
the set of all s
is et o ums 2"171' "1€Lc'

Theorem 3: The system given by (6) is controll-

able if and only if J:: is contained in the L}:-

module generated over Li by the columns of the

zsxn matrix (pI - F) and the nXm matrix G; that
»

n
Jo e (1 - F)’(;)Li 9)

Proof: Suppose that (9) holds and the initial
condition (7) is given. Then there exist o€ (me
and B€ (Lz)n such that

-F)*B - C*g = * * B
(PI-F)*B - G*a = x 8 + (F*9+G u°)|(°’.)€Jc.
Therefore by (8) and Theorem 2, 8 is the solution
of (6) with the given initial data and with input
ul(o - = Hence the system is controllable.

’

Conversely, suppose that the system is
controllable.

Define e, = (00 ... 1 0 ... )™ er", i=1,2,...n.
Lith place

By Theorem 2, e 6, sets up the initial value

i

X =e Then since the system is controllable,

o i*
by (8) and Theorem 2 there exist ui€(L:)m and
1.n
xiG(Lc) such that
- * - * =
(pI - F) xg G u, = e,
But e.§ , e, 8, ..., €6 1sabastsofJnasa
1o n o c

270
Jc-module, so that given y€ J:, there exist

60, 1=1,2, 0000

YieJc such that y = Zvi(etéo)' Hence
Y= L - *(Ty, *x;) - G*(Ty; *u). (10)

Then since o* f € L: for any o€ Jc' f€Lz, it
follows from (10) that the columns of (pI - F) and
G generate J: over L:'. a
Corollary: The system (6) is controllable if and
only 1f
eiQOE((pI - F), G)Ll. f=1, 2, cvop &
c
vhere e, = (00 ... 1 0...0)€ R"
ith place
In the finite-dimensional case where F and G
are over R6 , it is well known (KALMAN ([8]) that

the system given by (6) is controllable {f and
only if the rank of the nxnm matrix

(G,FGy...,F" 1) 15 equal to n. If F and G are




viewed as matrices over R (rather than Rco), this
is equivalent to requiring that

n

{G.FC. iR o

-1
G)R =R . (11)

Let N be a fixed subring of Jc with 6OEN.

In view of (11) it is reasonable to ask if the
condition

n

<c.r-'c.....1-'“'1c>N =N (12)

is necessary and sufficient for controllability
when F and G are over N. The answer is that (12)
is sufficient but not necessary. The proof of
sufficiency will be given in an expanded version
of this paper. The simple example below shows
that (12) is not necessary.

Example: Suppose that x(t) = x(t) + u(e- a), a>0.
In this case F = 60 and G = 6a are over the subring

R{sa] = (Zbirs :biER} cJ,.

ia
Since the inverse of §_1is 6-3'(6a)N # N for

-

N=R[§JoxN=J.
a ¢

However the system is controllable since there

1
exist a, B€LC such that (p - 60)*a+ 6% B=8 .
For instance we could take

t
e, Ogstsa

a(t) =/ e® (t-b),astsb
b-a

0, otherwise

a
£ _(¢+a-b-1), 0Ost<b-a

b-a
8(t) =
0, otherwise

where b is any fixed real number greater than a,
The function -8 given above is a control for the
initial condition x(0) = 1,

5. Further Applications

In addition to function controllability,
there exist many problem areas that can be investi-
gated using the convolution representation (6).
For example, the results of SONTAG [9] can be
carried over to this framework giving a necessary
and sufficient algebraic criterion for Euclidean
reachability.

A particularly interesting topic is the study
of feedback control systems with u = K*x,
K = mXn matrix over a subring N of Jc' Practical

problems include the development of algebraic
procedures for the design of K's to achieve
stabilization or pole allocation. Results on this
are already available in the case that F and G are

over a subring N that is a principal ideal domain
(see MORSE [10] and SONTAG [9]).

10.
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